

Four Years of Strip-Till Improves Soil Quality to Benefit Soil Fauna

Agronomic Facts

In 2000 farmers in the far-eastern tier counties of Colorado that are irrigated by the Ogallala Aquifer voiced their concerns to the leadership at the Irrigation Research Foundation (IRF) to have research/demonstrations look at strip-till effects. A team of scientists went to action and set up 600-foot-long strip plots comparing three tillage systems. In those studies - soil quality was a focal point.

As an outcome many improvements have and are being observed at the IRF and at sites where growers have adopted the practice. Soil biology is a slow responder to any reduced tillage practice. Microbes, the

microscopic sized creatures slowly repopulate the first three to eight inches of soil. In rich soils of the Corn Belt it is commonly known that in the surface acre six inches the soil will have a population of ½ to 100 million of these living creatures in a teaspoon of soil. Their life's work is eating and converting plant remains, old roots, corn stalks, leaves and cobs into humus, the material we call organic matter. They are the first line workers of the process called "carbon sequestration." Here in eastern Colorado strip-till soils we can find high populations of microbes, protozoa, nematodes, micro-arthropods and then larger creatures such as worms, millipedes, centipedes, orbit beetles, springtails, spiders, and ants.

Figure 1. Microscopic mite (micro-arthropod), a decomposer.

At the IRF, scientists Mike Petersen with USDA-Natural Resources Conservation Service and Jeff Tichota with Monsanto have made spring time worm counts as a barometer of how well the "soil fauna" are fairing in the long term strip-till plots against the conventional till plots. Their observations have indicated that soil quality is improving as more residues are left on the surface year around, see on the next page.

As the soil ecosystem becomes more diverse and healthy, thusly more productive, the amount of nutrients retained and available to plants increases. The conventionally tilled area at the IRF depicts a significantly less population of worms. Worms feed off of microbial protozoa, microbes, and some fungi. This is an indication of an improving and healthier soil ecosystem where more food is available to the myriad of bacteria, nematodes, millipedes, centipedes, mites, ants and so on.

Table 1. Comparison chart of worm population in strip-till plots vs. conventionally tilled plots. Ten counts of per site of living worms in spring of 2004.

Cultivation Type	Worms per sq. ft.	Pores per sq. decimeter	Pct O.M.
Strip-Till		<1mm 320-345	
(after 4 yrs)	15-32	1-2mm 25-32	1.78 - 1.91
		2-5mm 5-12	
Conventional		<1mm 65-145	
Till	1-10	1-2mm 10-18	1.50 - 1.56
(after 4 yrs)		2-5mm 1-6	

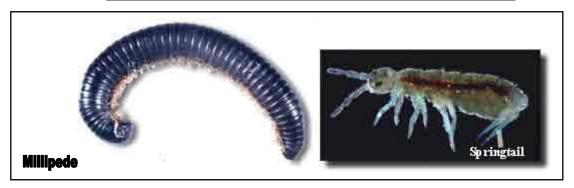


Figure 2. Larger burrowing and predator insects that occur in agricultural fields.

The "little bugs" we can see such as mites, millipedes, centipedes, ants, spiders, and springtails consume leaves, roots, old corn cobs, and stalks, these materials they excrete and pass on is eaten by the bacteria and protozoa

which become a usable form of nutrients to the plant root. Thousands of bacteria live throughout the soil profile, but tend to amass adjacent to plant roots. Actinomycetes, a large family of bacteria assist in breaking down cellulose (which makes up the cell walls of plants) and chitin (cell walls of fungi). Actinomycetes are the creatures that give that distinctive scent of freshly exposed moist soil. Actinomycetes and Nitrosomonas bacteria both process organic nitrogen into the ammonium form (NH₃). When these little microscopic creatures have rapidly converted nitrogen (N) they excrete excess NH₄ into the soil matrix, now usable by plant

Figure 4. Clostridium bacteria at 100X magnification.

roots. Other nitrogen fixing bacteria, cyanobacteria are able to fix N in wet soils. Azotobacter, Clostridium, and Azospirillium fix up to 30% of all the N_2 in the world. These bacteria are called free living nitrogen fixers. Symbiotic N fixers such as Rhizobium fix nitrogen in exchange with a plant root for it's carbon in the form of sugars and a home.

Earthworms and Their Activity

Earthworms were described by Aristotle as "the intestines of the earth." Soil scientists at many universities have studied these creatures in depth. Worms may deposit up to 10- to 15-tons of castings per acre on and in the near surface during a year. These casts leave behind high quantities of microbes, organic matter (OM), and plant nutrients. The N-P-K of casts is known to be 0.5/0.5/0.3 and are 50% OM and some 11 trace minerals. Castings acts much like time-released fertilizer for plants.

Lumbricus terrestris (common nightcrawler) is capable of digesting in a corn field 400 lbs/acre/year of corn residue noted from a study in Wisconsin. Night crawlers are our most noticed earthworm in eastern Colorado. Earthworms in the Wisconsin study determined that they were able to incorporate applied N via manure in a 10 week period faster than just soils growing rye. Night crawlers (L. terrestris) can burrow 10 to 16 inches in a 24 hour period in the spring months when the soil temperatures are cooler than 58-64° F.

In the worm counts done at the IRF, the scientists have seen night crawlers L. terrestris, red worms (L. rubellus), and brown wigglers (Aporrectodea longa). The dominant benefits of earthworm populations on the rise are improved water infiltration via stable 1 to 5mm in diameter channels/pores, soil aeration, stirring and digesting organic matter, buffering of soil pH, increasing soil porosity, and limited nematode control. As seen in Table 1, the porosity in the strip-till soil sampled in the first six inches is 4.4 times greater than the conventional tilled area (335 pores/sq.dm in strip-till compared to 75 pores/sq/dm. in conventionally tilled). We believe that is due to the increased biota component of the soils under the strip-till plots.

Water Infiltration Rates

The long term strip-till studies completed here on the IRF have included standard soil infiltration studies. Due to increased soil fauna (both micro and macro) we have concluded that their feeding and day-to-day living activities have helped improve soil organic matter mixing, stable soil aggregates and downward water movement. Since 2002, the USDA-NRCS and Monsanto scientists that work here on the strip-till demonstration project have numbers to back up these claims. Water infiltration has improved up to 4.3X in strip-till plots over that of the conventionally tilled plots. Standard infiltration rates for these fine sandy loam soils are 0.7 - 0.8 inch/hour.

Table 2. Standard pre-saturated infiltration rates taken at Irrigation Research Foundation near Yuma, Colorado.

	2002	2003	2004
Site Name	in/hr	in/hr	in/hr
ST-MT-CT Strip-guess row	4.85	5.39	4.59
ST-MT-CT Strip- semi- tracked row	1.49	2.65	2.42
ST-MT-CT Strip-hard tracked row	1.14	1.24	0.85
ST-MT-CT Convguess row	0.72	0.69	1.81
ST-MT-CT Convsemi- tracked row	0.50	0.49	0.38
ST-MT-CT Convhard tracked row	0.37	0.31	0.06

Note: Infiltration tests run with Cornell Infiltrometer (Dr. Harold van Es., Cornell University) 45-55 days after corn emergence. Soils tested are Manter fine sandy loam, 0 to 2 percent slopes.

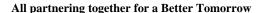
Summary:

In the long term multi-year strip-till study (2001-2004) here at the IRF in Yuma County, Colorado and at sister sites, we have observed improved soil quality characteristics.

- ✓ Soil porosity improved 3-5 times over conventionally tilled soils
- ✓ Faster dry and saturated intake rates
- ✓ Deeper rooting habits of the crops
- ✓ Increases in organic matter in the surface soil horizons for all four years of the study (see Table 1)
- ✓ Improved populations of worms along with the visual signs of more springtails, sow bugs, millipedes and centipedes.

This all points to an overall soil fauna population rise because they leave a higher number of holes/pores in the soil matrix which helps in water infiltration and water movement. Strip-till farming has clearly demonstrated that improved soil quality characteristics will offer benefits to growers in Colorado, Kansas, Nebraska, Oklahoma, and Texas. Those improvements are also being observed in yields at harvest time in more bushels in the bin.

November 2004 Irrigation Research Foundation


References that may be of help:

- 1. www.soils.agri.umn.edu/academics/classes/soil2125/doc/s9chap1.htm
- 2. www.cias.wisc.edu/wicst/pubs/earthworm.htm
- 3. www.soils.agri.umn.edu/academics/classes/soil2125/doc/s9chap2.htm
- 4. http://soils.usda.gov
- 5. www.rain.org/~sals/ingham.html
- 6. www.ces.purdue.edu/extmedia/AY/AY-279.html

MONSANTO

